logo
Envoyer le message
Shenzhen Olax Technology CO.,Ltd
À propos de nous
Votre partenaire professionnel et fiable.
Shenzhen OLAX Technology Co., Ltd, située à Shenzhen, en Chine.Il s'agit d'un important fournisseur national de solutions et d'équipements technologiques de terminaux de communication sans fil..Nos principaux produits sont les routeurs 4G CPE WIFI, les dongles USB WIFI, les modems. les hotspots WIFI de poche. les téléphones sans fil fixes, les terminaux.Sécurité du verrouillage du réseau et de la carte SIM.Nous avons une équipe de base avec plus de dix ans d'expérience dans la R & D, les ventes ...
En savoir plus

0

Année de création:

0

Million+
Employés

0

Million+
Les clients sont servis

0

Million+
Ventes annuelles :
LA CHINE Shenzhen Olax Technology CO.,Ltd Une qualité élevée
Le sceau de confiance, la vérification du crédit, le RoSH et l'évaluation de la capacité des fournisseurs. La société dispose d'un système de contrôle de qualité strict et d'un laboratoire de test professionnel.
LA CHINE Shenzhen Olax Technology CO.,Ltd Développement
Une équipe de conception professionnelle interne et un atelier de machines avancées. Nous pouvons coopérer pour développer les produits dont vous avez besoin.
LA CHINE Shenzhen Olax Technology CO.,Ltd Produits manufacturés
Des machines automatiques avancées, un système de contrôle strict du processus. Nous pouvons fabriquer tous les terminaux électriques au-delà de votre demande.
LA CHINE Shenzhen Olax Technology CO.,Ltd 100% de service
En vrac et en petits emballages sur mesure, FOB, CIF, DDU et DDP. Laissez-nous vous aider à trouver la meilleure solution pour toutes vos préoccupations.

qualité Routeurs portatifs de Wifi & Routeurs sans fil de WIFI fabricant

Trouvez des produits qui répondent mieux à vos besoins.
Cas et nouvelles
Les derniers points chauds
USIM dans le système 5G (NR) (1)
1.UE et UICC Dans le système de communication mobile défini par le 3GPP (projet de partenariat de troisième génération), le terminal (UE) de l'utilisateur est composé de:Le système d'exploitation de l'appareil doit être équipé d'un système d'exploitation de l'appareil, qui doit être équipé d'un système d'exploitation de l'appareil.; où UICC est une carte physique à l'épreuve des manipulations et résistante aux attaques logicielles et matérielles. 2. UICC et USIM UICC peuvent contenir plusieurs applications, dont l'une est USIM; USIM stocke et traite en toute sécurité toutes les données sensibles liées à l'utilisateur et au réseau domestique.L'USIM est sous le contrôle de l'opérateur de réseau local; l'opérateur sélectionne les données à configurer dans l'USIM avant leur émission et gère à distance l'USIM dans l'appareil de l'utilisateur par le biais du mécanisme OTA (over-the-air). 3.USIM dans 5G 3GPP définit l'USIM pour le système 5G dans Rel-15 pour l'accès et l'utilisation dans les réseaux 3GPP et non 3GPP, permettant aux réseaux de données externes UE (équipement utilisateur).L'USIM est défini dans Rel-16 comme authentification spécifique à une tranche de réseau. 4.L'authentification pour la première fois est une procédure obligatoire permettant à l'UE (équipement utilisateur) d'accéder aux réseaux 3GPP ou non 3GPP. EAP-AKA' or 5G-AKA are the only authentication methods that allow primary authentication and the subscription credentials are always stored in the USIM when the terminal supports 3GPP access functionalityPour l'authentification primaire basée sur AKA,l'authentification mutuelle effectuée dans l'USIM et la génération du matériel clé (IC de la clé d'intégrité et CK de la clé de confidentialité) envoyés par l'USIM au ME restent inchangés par rapport à la 3G, 4G et répond aux spécifications 3GPP TS 33.102 [3].Les modifications apportées à l'USIM d'authentification primaire 5G incluent le stockage d'un nouveau contexte de sécurité et de matériel de clé supplémentaire dans l'USIM (en fonction de la configuration de l'USIM). 4.1 Prise en charge de la 5G Si l'USIM prend en charge le stockage de paramètres 5G, le ME stocke le nouveau contexte de sécurité 5G et les nouvelles clés définies pour la hiérarchie des clés 5G (c'est-à-dire KAUSF, KSEAF et KAMF) dans l'USIM.USIM peut stocker un contexte de sécurité 5G pour les réseaux d'accès 3GPP et un contexte de sécurité 5G pour les réseaux d'accès non 3GPP. Le stockage du contexte de sécurité et du matériel clé dans l'USIM assure une reconnexion plus rapide lors de l'itinérance (l'UICC passe d'un ME à l'autre). 4.2 NPN support L'authentification dans les réseaux privés (appelés réseaux non publics indépendants) peut s'appuyer sur le cadre du PAE pris en charge par le système 5G;les équipements utilisateurs et les réseaux de service peuvent prendre en charge la 5G AKA, EAP-AKA" ou toute autre méthode d'authentification EAP de génération de clés, lorsque: ·Lorsqu'on utilise des méthodes d'authentification basées sur AKA, la clause 6.1 du 3PPTS 33501 [1] s'applique. ·Lorsque vous sélectionnez une méthode d'authentification EAP autre que EAP-AKA', la méthode sélectionnée détermine les informations d'identification requises dans l'UE et le réseau.La manière dont ces informations d'identification pour les méthodes de PAE autres que l'EAPAKA' sont stockées et traitées dans l'UE dépasse le champ d'application.Mais pour assurer un haut niveau de sécurité pour l'accès aux réseaux privés, private network operators may decide to require the presence and use of a UICC containing USIM applications in order to securely store and process subscription credentials for EAP methods such as EAP-AKA' or EAP-TLS . 5. Authentification secondaire Il s'agit d'une authentification facultative basée sur EAP, effectuée entre UE (équipement utilisateur) et DN (réseau de données externe).Bien que le choix de la méthode d'authentification et des informations d'identification du PAE dépasse le champ d'application du 3GPP,, les réseaux de données externes peuvent décider de protéger l'accès à leur DN en effectuant une authentification forte grâce à la méthode d'authentification EAP-AKA' ou EAP-TLS,UICC dans l'appareil de l'utilisateur La présence de l'USIM sur le DN stocke et traite en toute sécurité les informations d'identification utilisées pour accéder au DN. Authentification spécifique à la tranche réseau Utilisation d'une authentification spécifique à la tranche réseau entre l'appareil utilisateur et l'AAA (Authentification,Autorisation et comptabilité) serveur pour accéder à la tranche réseau est facultatif. L'authentification spécifique à une tranche de réseau est basée sur le cadre EAP et ses identifiants d'utilisateur et ses informations d'identification sont différents des informations d'identification des abonnements 3GPP.Il suit la certification primaire obligatoireLes parties prenantes qui déploient des slices peuvent décider d'installer l'USIM sur l'UICC des appareils des utilisateurs afin d'assurer un niveau élevé de sécurité pour accéder à leurs slices et prévenir l'émergence d'utilisateurs non autorisés.
L'innovation technologique SIM: un regard approfondi sur les eSIM et les vSIM
01.La carte électronique   la carte électronique,connu sous le nomSIM intégrée, ouSIM intégrée, est une technologie de carte SIM électronique programmable dont la principale caractéristique est qu'elle ne nécessite pas de fente physique,mais plutôt une puce intégrée qui est intégrée directement dans la carte de circuit imprimé de l'appareil ou à l'intérieur d'autres appareils. Partie matérielle     Puce de circuit intégré (CI):Au cœur de l'eSIM se trouve une petite puce IC intégrée à la carte mère de l'appareil, similaire à une carte SIM physique.EEPROM et unité de communication en série) pour le stockage et le traitement des données SIM.   Partie logicielle     Système d'exploitation (SO):La puce eSIM est équipée d'un système d'exploitation dédié, souvent appelé eUICC (Embedded Universal Integrated Circuit Card), qui gère les fonctions de la carte SIM, y compris le stockage des données,traitement et communication sécurisés.     Processus de production de la carte électronique   1 Fabrication de puces 2 Épreuves de puces 3 Intégration dans les dispositifs 4 Chargement du logiciel intégré 5 Épreuves et vérifications fonctionnelles   La carte SIM virtuelle (vSIM)est une technologie de carte SIM sans facteur de forme physique qui permet aux appareils de réaliser des fonctions de communication par le biais de logiciels, y compris SoftSIM, CloudSIM et autres.   02.La carte SIM virtuelle (vSIM)   La carte SIM virtuelle (vSIM)est une technologie de carte SIM sans facteur de forme physique qui permet aux appareils de réaliser des fonctions de communication par le biais de logiciels, y compris SoftSIM, CloudSIM et autres.   SoftSIMcontrôle les informations écrites à SoftSIM par l'intermédiaire du fournisseur de terminaux,et l'utilisateur achète et utilise des services de communication directement via le logiciel sans l'intervention de l'opérateur, qui coupe la connexion directe entre l'utilisateur et l'opérateur.   CloudSIMest une sorte de fonction de carte SIM réalisée sur la base de la technologie de cloud computing, où les utilisateurs utilisent des services réseau sur leurs appareils par le biais de services cloud.   03.Procédure d'activation du service SIM   CloudSIMintégrer les ressources de trafic de chaque opérateur dans le cloud, sélectionner les opérateurs en fonction de la qualité du signal et du réseau des différentes régions,et les pousse vers les terminaux pour fournir aux utilisateurs les meilleurs services réseauL'inclusion de plusieurs opérateurs permet aux utilisateurs de choisir de manière flexible des forfaits plus avantageux.       Voulez-vous en savoir plus sur les cartes SIM et d'autres sujets de communication? Nous continuerons à partager plus à ce sujet! On se voit dans le prochain numéro!
Link Adaptation (LA) in 5G (NR) Networks (Continued)
  In 5G (NR) wireless networks, mobile terminal equipment (UEs) can employ two types of link adaptation: inner-loop link adaptation and outer-loop link adaptation. Their characteristics are as follows: ILLA – Inner-loop link adaptation; OLLA – Outer-loop link adaptation. I. ILLA (Inner-loop Link Adaptive) performs fast and direct adjustments based on the Channel Quality Indicator (CQI) reported by each UE. The UE measures downlink quality (e.g., using CSI-RS). It reports the CQI to the gNB, which maps the CQI (via a static lookup table) to the MCS index for the next transmission. This mapping reflects the link condition estimate for that time slot/TTI. ILLA applies a three-step process as follows:   The UE measures the CSI-RS and reports CQI=11. The gNB maps CQI=11 to MCS=20. The MCS is used to calculate the transport block for the next time slot.   ILLA's advantage lies in its ability to adapt very quickly to channel changes; however, it has limitations in terms of false detections, CQI errors, and noise. Specifically, the BLER target value may shift if the channel is not ideal or the feedback is imperfect.   II. OLLA (Outer Loop Link Adaptive) uses a feedback mechanism to fine-tune the MCS target value to compensate for the actual link performance observed through HARQ ACK/NACK responses. For each transmission, the gNB receives either an ACK (success) or NACK (failure); where: If the BLER is higher than the set target value (e.g., 10%), OLLA adjusts downwards by a correction offset (Δoffset), i.e., reducing the aggressiveness of the MCS. If the BLER is lower than the target value, the offset is adjusted upwards, i.e., increasing the aggressiveness of the MCS. The offset is added to the SINR→CQI mapping in ILLA, thus ensuring that the BLER eventually converges to the target value—even if the input signal is not ideal.   OLLA's advantage lies in its ability to maintain a robust and stable BLER and adapt to slowly changing system errors in the SINR/CQI report. Due to its slower response speed, the optimal setting of the step size (i.e., Δup and Δdown) requires a trade-off between stability and response speed. In the OLLA mechanism, feedback is used to fine-tune the MCS target to compensate for the actual link performance observed through HARQ ACK/NACK responses.   III. Comparison of 4G and 5G Link Adaptation The table below compares 4G and 5G link adaptation.   Feature 5G NR 4G LTE CSI CQI + PMI + RI + CRI Mainly CQI Adaptation Speed Up to 0.125 ms 1 ms Traffic Types eMBB, URLLC, mMTC eMBB mainly MCS Mapping ML-optimized, Vendor-driven Fixed table Beamforming MassiveMIMO,Beam selection Minimal Scheduler Fully integrated & Intelligent Basic CQI, PF                     In 5G (NR) networks, Link Adaptive (LA) plays a crucial role in ensuring high-performance and reliable connectivity. Unlike the slower, fixed-table approach of 4G (LTE), 5G systems employ smarter and faster technologies, including AI/ML and real-time feedback. This enables the network to adapt to changing environments in real time and utilize radio resources more efficiently.

2025

11/28

Link Adaptation (LA) in 5G (NR) Networks
  I. Link Adaptation In mobile communication networks, the wireless environments of any two end users (UEs) are never exactly the same. Some users may be right next to a 5G base station with excellent wireless signal, while others may be deep inside buildings, moving at high speeds, or at the edge of a cell. However, they all expect a fast and stable network experience. To achieve the highest possible throughput and optimal reliable connection, "Link Adaptation" technology was developed. Link adaptation can be viewed as an "automatic mode" of the 5G physical layer, continuously monitoring the wireless environment and adjusting transmission parameters in real time to provide the best data rate while controlling errors.   II. Link Adaptation (AMC) in 5G In 5G networks, link adaptation refers to the process of dynamically adjusting transmission parameters (such as modulation, coding, and transmit power) to optimize the communication link between the base station (gNodeB) and the user equipment (UE). The goal of link adaptation is to maximize spectral efficiency, throughput, and reliability while adapting to constantly changing channel conditions and user needs. Figure 1. 5G Link Adaptive Process   III. Characteristics of 5G Link Adaptive Process   Modulation and Coding Scheme (MCS) Selection:Link adaptive process involves selecting a suitable modulation and coding scheme based on channel conditions, signal-to-noise ratio (SNR), and interference levels. Higher modulation schemes offer higher data rates but are more demanding on channel conditions; lower modulation schemes are more robust under adverse conditions. Transmit Power Control: Link adaptive process also includes adjusting transmit power to optimize signal quality and coverage while minimizing interference and power consumption. Transmit power control helps maintain a balance between signal strength and interference levels, especially in dense network deployments. Channel Quality Feedback: Link adaptive process relies on feedback mechanisms to provide information about channel conditions, such as Channel State Information (CSI), Received Signal Strength Index (RSSI), and Signal-to-Interference-Ratio (SINR). This feedback enables the gNodeB to make informed decisions regarding modulation, coding, and power adjustments. Adaptive Modulation and Coding (AMC): AMC is a key feature of link adaptive process; it dynamically adjusts modulation and coding parameters based on real-time channel conditions. By adapting to changes in channel quality, AMC maximizes data rates and spectral efficiency while ensuring reliable communication. Fast Link Adaptation: In rapidly changing channel environments, such as high-mobility scenarios or fading channels, fast link adaptation technology is used to quickly adjust transmission parameters to cope with channel fluctuations. This helps maintain a stable and reliable communication link under changing channel conditions.   In wireless systems, link adaptation plays a crucial role in optimizing wireless communication system performance by continuously adjusting transmission parameters to match current channel conditions and user needs. By maximizing spectral efficiency and reliability, link adaptation helps achieve high data rates, low latency, and seamless connectivity in 5G networks.

2025

11/27

5G (NR) System Network Functions and Entities
  As 5G (NR) supports increasingly more connections and functions, the number of network functions and entities in the system is also constantly increasing. 3GPP defines network functions and entities in Release 18.5 as follows:   I. Network Function (NF) Units The 5G system includes the following functional units:  AUSF (Authentication Server Function); AMF (Access and Mobility Management Function); DN (Data Network), specifically including: operator services, internet access, or third-party services; UDSF (Unstructured Data Storage Function); NEF (Network Exposure Function); NRF (Network Repository Function); NSACF (Network Slice Admission Control Function); NSSAAF (Network Slice-Specific and SNPN Authentication and Authorization Function); NSSF (Network Slice Selection Function); PCF (Policy Control Function); SMF (Session Management Function); UDM (Unified Data Management); UDR (Unified Data Repository). - UPF (User Plane Functions). UCMF (UE Radio Capability Management Functions). AF (Application Functions). UE (User Equipment). RAN (Radio Access Network). 5G-EIR (5G Device Identity Registration). NWDAF (Network Data Analysis Functions). CHF (Charging Functions). TSN AF (Time-Sensitive Network Adapter). TSCTSF (Time-Sensitive Communications and Time Synchronization Functions). DCCF (Data Collection Coordination Functions). ADRF (Analysis Data Repository Functions). MFAF (Message Frame Adapter Functions). NSWOF (Non-Seamless WLAN Offload Functions). EASDF (Edge Application Server Discovery Functions). *Functions provided by DCCF or ADRF can also be carried by NWDAF.   II. Network Entities The 5G system, supporting connectivity with non-3GPP Wi-Fi, WLAN, and wired access networks, also includes the following entity units in its architecture: SCP (Service Communication Agent). SEPP (Secure Edge Protection Agent). N3IWF (Non-3GPP Interoperability Function). TNGF (Trusted Non-3GPP Gateway Function). W-AGF (Wired Access Gateway Function). TWIF (Trusted WLAN Interoperability Function).

2025

11/26